Multi-view face recognition based on tensor subspace analysis and view manifold modeling

نویسندگان

  • Xinbo Gao
  • Chunna Tian
چکیده

This paper aims to address the face recognition problem with a wide variety of views. We proposed a tensor subspace analysis and view manifold modeling based multi-view face recognition algorithm by improving the TensorFace based one. Tensor subspace analysis is applied to separate the identity and view information of multi-view face images. To model the nonlinearity in view subspace, a novel view the linearity in identity subspace as well as the nonlinearity in view subspace. Meanwhile, a parameter estimation algorithm is developed to solve the view and identity factors automatically. The new face model yields improved facial recognition rates against the traditional TensorFace based method. & 2009 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-View Subspace Clustering via Relaxed L1-Norm of Tensor Multi-Rank

In this paper, we address the multi-view subspace clustering problem. Our method utilize the circulant algebra for tensor, which is constructed by stacking the subspace representation matrices of different views and then shifting, to explore the high order correlations underlying multi-view data. By introducing a recently proposed tensor factorization, namely tensor-Singular Value Decomposition...

متن کامل

View-Subspace Analysis of Multi-View Face Patterns

Multi-view face detection and recognition has been a challenging problem. The challenge is due to the fact that the distribution of multi-view faces in a feature space is more dispersed and more complicated than that of frontal faces. This paper presents an investigation into several view-subspace representations of multi-view faces, learned by using independent component analysis (ICA), indepe...

متن کامل

Kernel Discriminant Analysis Based on Canonical Differences for Face Recognition in Image Sets

A novel kernel discriminant transformation (KDT) algorithm based on the concept of canonical differences is presented for automatic face recognition applications. For each individual, the face recognition system compiles a multi-view facial image set comprising images with different facial expressions, poses and illumination conditions. Since the multi-view facial images are non-linearly distri...

متن کامل

Low-rank Multi-view Clustering in Third-Order Tensor Space

The plenty information from multiple views data as well as the complementary information among different views are usually beneficial to various tasks, e.g., clustering, classification, de-noising. Multi-view subspace clustering is based on the fact that the multi-view data are generated from a latent subspace. To recover the underlying subspace structure, the success of the sparse and/or low-r...

متن کامل

A two-stage head pose estimation framework and evaluation

Head pose is an important indicator of a person’s focus of attention. Also, head pose estimation can be used as the front-end analysis for multi-view face analysis. For example, face recognition and identification algorithms are usually view dependent. Pose classification can help such face recognition systems to select the best view model. Subspace analysis has been widely used for head pose e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurocomputing

دوره 72  شماره 

صفحات  -

تاریخ انتشار 2009